3,476 research outputs found

    4P. A Learning Game to Improve Supply Chain Efficiency

    Get PDF
    Economic competitiveness and prosperity are decreased when ubiquitous supply chains suffer disruptive and costly perturbations. Statistical physics shows that both the nature of the perturbations and the effectiveness of management attempts to minimize them depend strongly on the extent of rational information exchange between the entities in the chain. A new immersive interactive learning object game is demonstrated that encourages the exploration of information technology investment strategies, and demonstrates the dramatic impact rational information exchange can have in controlling these disruptive perturbations

    A Physics Approach to Supply Chain Oscillations and Their Control

    Get PDF

    Evaluation of Wind and Solar Energy Investments in Texas

    Get PDF
    The primary objective of the project is to evaluate the benefits of wind and solar energy and determine economical investment sites for wind and solar energy in Texas with economic parameters including payback periods. A 50 kW wind turbine system and a 42 kW PV system were used to collect field data. Data analysis enabled yearly energy production and payback period of the two systems. The average payback period of a solar PV system was found to be within a range of 2-20 years because the large range of the payback period for PV systems were heavily influenced by incentives. This is in contrast to wind energy, where the most important factor was found to be wind resources of a region. Payback period for the installed wind system in Texas with federal tax credits was determined to be approximately 13 years

    Proton irradiation on materials

    Get PDF
    A computer code is developed by utilizing a radiation transport code developed at NASA Langley Research Center to study the proton radiation effects on materials which have potential application in NASA's future space missions. The code covers the proton energy from 0.01 Mev to 100 Gev and is sufficient for energetic protons encountered in both low earth and geosynchronous orbits. With some modification, the code can be extended for particles heavier than proton as the radiation source. The code is capable of calculating the range, stopping power, exit energy, energy deposition coefficients, dose, and cumulative dose along the path of the proton in a target material. The target material can be any combination of the elements with atomic number ranging from 1 to 92, or any compound with known chemical composition. The generated cross section for a material is stored and is reused in future to save computer time. This information can be utilized to calculate the proton dose a material would receive in an orbit when the radiation environment is known. It can also be used to determine, in the laboratory, the parameters such as beam current of proton and irradiation time to attain the desired dosage for accelerated ground testing of any material. It is hoped that the present work be extended to include polymeric and composite materials which are prime candidates for use as coating, electronic components, and structure building. It is also desirable to determine, for ground testing these materials, the laboratory parameters in order to simulate the dose they would receive in space environments. A sample print-out for water subject to 1.5 Mev proton is included as a reference

    Removal of cationic and anionic dyes by immobilised titanium dioxide loaded activated carbon

    Get PDF
    Combination of adsorption and photodegradation processes induces strong beneficial effects in dye removals. Adding high adsorption capacity activated carbon to photoactive titanium dioxide is an attractive solution due to their potential in removing dyes of diverse chemical characteristics. Recently, immobilisation has been an acceptable approach to overcome the drawbacks encountered with powder suspensions. The present study involves the removals of Victoria Blue R (VBR), a cationic dye and Indigo Carmine (IC), an anionic using approximately one gram of immobilised titanium dioxide (TiO2), activated carbon (AC) and mixture titanium dioxide/activated carbon (TiO2/AC) from 200 mL solution at the concentration of 20 ppm under UV illumination for 4 hours. Comparisons were made in terms of their removal efficiency by applying first-order kinetics model. Immobilised TiO2 showed total removal of IC in 40 minutes whereas only 44% of VBR was removed in 2 hours. On the other hand, in the case of immobilised AC, about 87% of VBR and 6% of IC were removed in 2 hours. The results obtained using immobilised TiO 2/AC proved the prominence of this immobilised sample in dealing with VBR and IC by achieving 95% and 62% removal respectively in 2 hours

    Shielding from Space Radiations

    Get PDF
    This Final Progress Report for NCC-1-178 presents the details of the engineering development of an analytical/computational solution to the heavy ion transport equation in terms of a multi-layer Green's function formalism as applied to the Small Spacecraft Technology Initiative (SSTI) program. The mathematical developments are recasted into a series of efficient computer codes for space applications. The efficiency of applied algorithms is accomplished by a nonperturbative technique of extending the Green's function over the solution domain. The codes may also be applied to the accelerator boundary conditions to allow code validation in laboratory experiments. Correlations with experiments for the isotopic version of the code with 59 and 80 isotopes present for a two layers target material in water has been verified

    Activation of Wingless Targets Requires Bipartite Recognition of DNA by TCF

    Get PDF
    SummarySpecific recognition of DNA by transcription factors is essential for precise gene regulation. In Wingless (Wg) signaling in Drosophila, target gene regulation is controlled by T cell factor (TCF), which binds to specific DNA sequences through a high mobility group (HMG) domain [1]. However, there is considerable variability in TCF binding sites [2–5], raising the possibility that they are not sufficient for target location. Some isoforms of human TCF contain a domain, termed the C-clamp, that mediates binding to an extended sequence in vitro [6]. However, the significance of this extended sequence for the function of Wnt response elements (WREs) is unclear. In this report, we identify a cis-regulatory element that, to our knowledge, was previously unpublished. The element, named the TCF Helper site (Helper site), is essential for the activation of several WREs. This motif greatly augments the ability of TCF binding sites to respond to Wg signaling. Drosophila TCF contains a C-clamp that enhances in vitro binding to TCF-Helper site pairs and is required for transcriptional activation of WREs containing Helper sites. A genome-wide search for clusters of TCF and Helper sites identified two new WREs. Our data suggest that DNA recognition by fly TCF occurs through a bipartite mechanism, involving both the HMG domain and the C-clamp, which enables TCF to locate and activate WREs in the nucleus
    corecore